
Operating System
COMP301TH

5

Lecture: 2

System Software and Resource Abstraction

System Software:

System software is a type of computer program that is designed to run a

computer’s hardware and application program i.e. system software is the

interface between the hardware and user applications. The operating system is

the best known example of system software.

 System software is used to manage the computer itself.

 It runs in the background, maintaining the computer’s basic functions so

users can run higher-level application software to perform certain tasks.

 Essentially, system software provides a platform for application software

to be run on top of.

Important features of System Software:

Computer manufacturers usually develop the system software as an integral

part of the computer. The primary responsibility of this software is to create an

interface between the computer hardware they manufacture and the end user.

System software generally includes the following features:

1. High Speed: System software must be as efficient as possible to provide

an effective platform for higher-level software in the computer system.

2. Hard to manipulate: It often requires the use of a programming

language, which is more difficult to use than a more intuitive user

interface (UI).

3. Written in a low-level computer language: System software must be

written in a computer language the central processing unit (CPU) and

other computer hardware can read.

4. Close to the system: It connects directly to the hardware that enables

the computer to run.

5. Versatile: System software must communicate with both the specialized

hardware it runs on and the higher-level application software that often

has no direct connection to the hardware it runs on. System software

also must support other programs that depend on it as they evolve and

change.

Types of System Software:

System software manages the computer’s basic functions, including the disk

operating system, file management utility software and operating system.

Other examples of system software include the following:

Operating System
COMP301TH

6

 The BIOS (Basic input/output system): gets the computer system

started after it’s turned on and manages the data flow between the OS

and attached devices, such as the hard drive, video adapter, keyboard,

mouse and printer.

 The boot program loads the OS into the computer’s main memory or

random access memory (RAM).

 An assembler takes basic computer instructions and converts them into

a pattern of bits that the computer’s processor can use to perform its

basic operations.

 A device driver controls a particular type of device that is attached to

your computer such a keyboard or mouse. The driver program converts

the more general I/O instruction of the OS to messages that the device

type can understand.

System software can also include system utilities, such as the disk

defragmenter and System Restore and development tools, such as compilers

and debuggers.

Operating System
COMP301TH

7

Resource Abstraction:

 Resource abstraction is the process of hiding the details of how the

hardware operates, thereby making computer hardware relatively easy for an

application programmer to use.

 The main purpose of an operating system is to provide an interface

between the hardware and the application programs and to manage the various

pieces that make up a computer. To be more precise, these pieces are called

resource.

 A resource is any object which can be allocated within a system.

Some examples of resources are processors (CPUs), input/output devices, files

and memory (RAM).

In a computer system, abstractions are used to eliminate tedious detail that a

programmer otherwise would have to handle. Without a suitable abstraction for

writing characters to a screen (such as a print function), we would have to

learn to set a screen bitmap so that it would print “Hello, world” in 12 point

Arial font on a video display. Rather than learning all those details, the C

programmer just learns about printf() and the stdio library. The time that a

programmer would have spent writing code to form characters on a screen can

now be spent writing code to solve the problem at hand.

Resource abstraction has its tradeoff, however. While making the hardware

easier to use, resource abstraction also limits the specific level of control over

the hardware by hiding some functionality behind the abstraction. Since most

application programmers do not need such a high level of control, the

abstraction provided by the operating system is generally very useful.

Example: An abstraction of a Disk Drive

Operating System
COMP301TH

8

Let us see how disk output operations can be represented at different levels of

abstraction. The device is controlled with software operations for copying a

block of information from the computer’s main memory into the device’s buffer

memory.

A series of commands is required to write information from a primary memory

block onto a disk such as:

load(block, length, device);

seek(device, 236);

out(device, 9);

A simple abstraction (Fig b) would be to package these commands with other

necessary supplementary commands, into a write() procedure such as:

void write(char *block, int len, int device, int track, int sector)

{

…

load(block, len, device);

seek(device, 236);

out(device, 9);

…

}

Data block addresses on a disk are specified by a track number, such as 236

in the load instruction, and sector number, such as 9 in the out instruction.

A higher-level abstraction might translate every block specification so that a

nonnegative integer address is used instead of a disk-specific address such as

track 236 in the seek () function and sector 9 in the out() function.

This allows the programmer to ignore physical addresses defined by disk drive

technology in favor of logical addresses that apply to any kind of storage device.

Now, an output operation such as:

write(block, 100, device, 236, 9) ;

can be written as

write(block, 100, device, 3788);

Operating System
COMP301TH

9

An even higher-level abstraction provides software with a way to treat the disk

as file storage. Suppose the system software provides a file identification, fileID,

as the abstraction of the disk. Then a library such as the C stdio library, can

provide a function to write an integer variable, datum (stored in a small

memory block), onto the device at an implicit offset from the beginning of the

file. The programmer then uses operations such as:

fprintf(fileID, “%id”, datum);

to write information to thee disk.

