
Operating System
COMP301TH

27

Unit-II

Lecture: 5

(Process Management)

(Part-II)

Process Creation:

When an operating system is booted, typically numerous processes are created.

Some of these are foreground processes i.e. processes that interact with users

and work for them. Other runs in the background and are not associated with

particular users, but instead have some specific function.

Four principal events cause processes to be created:

1. System initialization

2. Execution of a process-creation system call by a running process.

3. A user request to create a new process

4. Initiation of a batch job

Daemon Process:

A daemon process is a background process that is not under the direct control

of the user.

This process is usually started when the system is bootstrapped/started and is

terminated with the system shut down.

The daemon process names normally end with a d.

Some of the examples of daemon processes in Unix are:

 crond: This is a job scheduler that runs jobs in the background.

 syslogd: this is a system logger that implements the system logging

facility and collects system messages.

 httpd: this is the web server daemon process that handles the Hypertext

Transfer Protocol.

 dhcpd: This daemon configures the TCP/IP information for users

dynamically.

In UNIX, the ps program can be used to list the running processes while in

Windows task manager can be used.

In addition to the processes created at boot time, new processes can be created

afterwards as well.

Often a running process will issue system calls to create one or more new

processes to help it do its job.

Operating System
COMP301TH

28

In interactive systems, users can start a program by typing a command or

double clicking an icon. Taking either of these actions starts a new process and

runs the selected program in it.

Technically, a new process is created by having an existing process

execute a process creation system call. That process may be a running

user process, a system process invoked from the keyboard or mouse.

What that process does is execute a system call to create a new process.

In UNIX, there is only one system call to create a new process: fork.

This call creates an exact clone of the calling process.

\In windows, a single Win32 function call, CreateProcess, handles both process

creation and loading the correct program into the new process

What does a process look like in memory?

A process has its state of execution which is described with the program

counter(PC), the stack pointer(SP) and all this information is used by the

operating system to decide how to schedule the process, how to swap between

multiple process and for other management of tasks.

 A stack pointer is a small register that stores the address of the last

program request in a stack.

A process encapsulated all of the data for running applications and this

includes the code, the data, the variables etc.

Every single element of the process state has to be uniquely identified by its

address. So an OS abstraction used to encapsulate all of the process states is

address space.

When a program is loaded into the memory and it becomes a process, it can be

divided into four sections: stack, heap, text and data.

Operating System
COMP301TH

29

The following image shows a simplified layout of a process inside main

memory:

 Stack:

o The process Stack contains the temporary data such as

method/ function parameters, return address and local

variables.

o It is a dynamic part of the address space and it grows and

shrinks during the execution with a last-in,first-out (LIFO)

order.

o In the diagram, arrows show that stack and heap grow in

opposite direction.

 Heap:

o This is dynamically allocated memory to a process during its

run time.

o During the execution, the process dynamically

 creates some state

 allocated memory

 store the temporary results etc.

 Data:

o This section contains the global and static variables.

 Text:

o This includes the current activity represented by the value of

Program Counter and the contents of the processor’s registers.

o This segment is a read-only space.

