Computer System Architecture COMP201TH Lecture-4 Karnaugh Maps (K-Map)

• K Map:

- Karnaugh map is a method of simplifying Boolean algebra expressions.
- It is actually a truth table in another form.
- It offers a graphical method of reducing a digital circuit to its minimum number of gates.
- Karnaugh maps can be used on small circuits having 2 to 3 inputs as an alternative to Boolean algebra and on more complex circuits having up to 6 inputs; it can provide quicker and simpler minimisation than Boolean algebra.

Fig. : Representation of K-map for 2,3 and 4 variables respectively

- Constructing K-maps:
 - The shape and size of the map is dependent on the number of binary inputs in the circuit to be analysed.
 - \circ 2 input circuits with inputs A and B require maps with 2^2 = 4cells.
 - \circ n input circuit will require map with 2^n cells.

- In K maps, the cells are ordered in Gray Code and each cell position represents on combination of input conditions while each cell value represents the corresponding output value.
 - Gray code is an ordering of the binary number system such that two successive values differ in only one bit. E.g. the representation of the (1)₁₀ in binary would normally be 01 and (2)₁₀ would be 10.
 - In Gray code, these values are represented as 01 and 11, respectively.

Binary	Gray	Binary	Gray	Binary	Gray
0	0	00	00	000	000
1	1	01	01	001	001
		10	11	010	011
		11	10	011	010
				100	110
				101	111
				110	101
				111	100

Fig.: Corresponding Gray codes of Binary numbers

- Example of K-Map:
 - Simplify A + A` B by use of Karnaugh Map.

 $f = A+A^B \rightarrow minterm expression \rightarrow A^=0 and A=1.$

In the expression, first see first term is A, here we will take value of B as both 0 and 1.

Remember, while using K-map if one variable is not specified then we should consider its value both 0 and 1.

e.g. if $f = AB + AB^C + A^BC^$

here in the first term AB value of C is not specified, so when computing for K map, we will consider value of C as both 0 and 1.

K map for two variable is:

Now, K-map for $f = A + A^B$ will be:

In K-map, we will put 1 in the cell where in value of A and B are specified in the Boolean expression i.e. f = A + AB -> its in minterm expression,

So f = 1 + 01.

Now, as said earlier: In the expression, first see first term is A, here we will take value of B as both 0 and 1.

So, for the given Boolean expression we will take first term as 10 and 11 as value of B is not given so we are considering it both 0 and 1.

Now see, we have put 1 in the cell where cell positions are 10, 11 and 01.

Next step is: we will group adjacent 1's and choose common between them from their cell positions.

Now, first group (vertically): 01

11

Common is 1 which is B

Now, second group (horizontally): 10

11

Common is 1 which is A.

So, the solution is A+B.

- Rules for simplifying Boolean expressions using K Maps ^[1, 2]:
- Groups may not include any cell containing a zero

• Groups may be horizontal or vertical, but not diagonal.

Groups must contain 1, 2, 4, 8, or in general 2ⁿ cells. That is if n = 1, a group will contain two 1's since 2¹ = 2. If n = 2, a group will contain four 1's since 2² = 4.

• Each group should be as large as possible.

• Each group should be as large as possible.

• Each cell containing a *one* must be in at least one group.

- A square containing 1 should not be left alone to be included in the final expression if there is a possibility of its inclusion in a group of two squares containing 1s. Similarly, a group of two 1-squares (i.e. square containing 1) should not be made if these 1-square can be included in a group of four 1-squares and so on.
- Groups may overlap.

• Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.

• There should be as few groups as possible, as long as this does not contradict any of the previous rules.

Now, next = tep is to graf adjaced 1's.

$$\frac{37}{14} \underbrace{37}_{14} \underbrace{37}_{14} \underbrace{11}_{16} \underbrace{10}_{16} \underbrace{$$

O Simplifs:
$$f = x_0 z + x_0 \overline{z} + x_0 \overline{z} + x_0 \overline{z}$$

St:
 $y = 0 + 100 + 111 + 110$
 $f = 0 + 100 + 111 + 110$
 $f = 0 + 100 + 111 + 110$
 $f = 0 + 100 + 111 + 110$
 $f = 0 + 100 + 111 + 110$
 $f = 0 + 100 + 111 + 110$
 $f = 0 + 100 + 111 + 110$
 $f = 0 + 2$
 $f = 0 + 2$

References :

- Composed by David Belton <u>http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html</u> Eric Coates (Revision 14.01 18th July 2020) <u>https://learnabout-electronics.org/Digital/dig24.php</u> [1]
- [2]