Computer System Architecture
 COMP201TH
 Lecture-4
 Karnaugh Maps (K-Map)

- K Map:

- Karnaugh map is a method of simplifying Boolean algebra expressions.
- It is actually a truth table in another form.
- It offers a graphical method of reducing a digital circuit to its minimum number of gates.
- Karnaugh maps can be used on small circuits having 2 to 3 inputs as an alternative to Boolean algebra and on more complex circuits having up to 6 inputs; it can provide quicker and simpler minimisation than Boolean algebra.

Fig. : Representation of K-map for 2,3 and 4 variables respectively

- Constructing K-maps:
- The shape and size of the map is dependent on the number of binary inputs in the circuit to be analysed.
- 2 input circuits with inputs A and B require maps with $2^{2}=4$ cells.
- n input circuit will require map with 2^{n} cells.
- In K maps, the cells are ordered in Gray Code and each cell position represents on combination of input conditions while each cell value represents the corresponding output value.
- Gray code is an ordering of the binary number system such that two successive values differ in only one bit. E.g. the representation of the $(1)_{10}$ in binary would normally be 01 and (2) 10 would be 10 .
- In Gray code, these values are represented as 01 and 11, respectively.

Binary	Gray	Binary	Gray	Binary	Gray
0	0	00	00	000	000
1	1	01	01	001	001
		10	11	010	011
	11	10	011	010	
			100	110	
			101	111	

Fig.: Corresponding Gray codes of Binary numbers

- Example of K-Map:
- Simplify A + AB by use of Karnaugh Map.
$\mathrm{f}=\mathrm{A}+\mathrm{A}^{`} \mathrm{~B} \rightarrow$ minterm expression $\rightarrow \mathrm{A}^{`}=0$ and $\mathrm{A}=1$.
In the expression, first see first term is A , here we will take value of B as both 0 and 1 .

Remember, while using K-map if one variable is not specified then we should consider its value both 0 and 1.
e.g. if $f=A B+A B^{`} C+A^{`} B C^{`}$
here in the first term $A B$ value of C is not specified, so when computing for K map, we will consider value of C as both 0 and 1 .

K map for two variable is:

Now, K-map for $\mathrm{f}=\mathrm{A}+\mathrm{A}$ B will be:

In K-map, we will put 1 in the cell where in value of A and B are specified in the Boolean expression i.e. $\mathrm{f}=\mathrm{A}+\mathrm{A}^{`} \mathrm{~B}$-> its in minterm expression,

So $\mathrm{f}=1+01$.
Now, as said earlier: In the expression, first see first term is A, here we will take value of B as both 0 and 1 .

So, for the given Boolean expression we will take first term as 10 and 11 as value of B is not given so we are considering it both 0 and 1.

Now see, we have put 1 in the cell where cell positions are 10,11 and 01.
Next step is: we will group adjacent 1 's and choose common between them from their cell positions.

Now , first group (vertically): 01
11
Common is 1 which is B
Now, second group (horizontally): 10
11
Common is 1 which is A .
So, the solution is $\mathrm{A}+\mathrm{B}$.

- Rules for simplifying Boolean expressions using K Maps [1, 2]:
- Groups may not include any cell containing a zero

- Groups may be horizontal or vertical, but not diagonal.

- Groups must contain $1,2,4,8$, or in general 2^{n} cells.

That is if $n=1$, a group will contain two 1 's since $2^{1}=2$.
If $\mathbf{n}=2$, a group will contain four $1^{\prime \prime}$ s since $2^{\mathbf{2}}=4$.

- Each group should be as large as possible.

- Each group should be as large as possible.

(Note that no Boolean laws broken, but not sufficiently minimal)
- Each cell containing a one must be in at least one group.
- $A B$

- A square containing 1 should not be left alone to be included in the final expression if there is a possibility of its inclusion in a group of two squares containing 1 s . Similarly, a group of two 1 -squares (i.e. square containing 1) should not be made if these 1 -square can be included in a group of four $\mathbf{1}$-squares and so on.
- Groups may overlap.

- Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.

- There should be as few groups as possible, as long as this does not contradict any of the previous rules.

Q: simplify Rouliean function:

$$
F=\bar{x} y z+\bar{x} y \bar{z}+x \bar{y} \bar{z}+x \bar{y} z
$$

St: For 3 -variatiles, $k-m p p$ is :

Now, $f=\bar{x} y z+\bar{x} y \bar{z}+x \bar{y} \bar{z}+x \bar{y} z$
In th. above expression, all the terms contain all the variables.
ore can apo write f as:

$$
f=\frac{011,}{\overline{x y z}}+\frac{010}{\overline{x y z}}+\frac{100}{x \bar{y} \bar{z}}+\frac{101}{x \overline{y z}}
$$

Cell Psitimsfor which we wall put cell value as 1.
$\therefore K-m o p$ call be :

Now, next step in to gran adjacent I's.

Now, we will choose corm in the gro of ie corm amoy the cell positions.
\therefore Grape: $1 \rightarrow$

common and what is $\bar{x} y$ $\because 0$ un minterm is refrexutet in complement form.
lily Group: $2 \rightarrow x$ y z
\therefore Solution in: $f=\bar{x} y+x \bar{y}$ Ans
Now, Rets solve this using boolean identities:

$$
\begin{aligned}
f & =\bar{x} y z+\overline{x y} \bar{z}+x \bar{y} \bar{z}+x \bar{y} z \\
& =\overline{x y}(z+\bar{z})+x \bar{y}(z+\bar{z}) \\
& =\overline{x y}+x \bar{y}
\end{aligned}
$$

Simplify: $f=\bar{x} y z+x \bar{y} \bar{z}+x y z+x y \bar{z}$
Se:

$$
f=011+100+111+110
$$

\therefore Grompl :

$$
=y z
$$

Gromp 2:

$$
\left.\begin{array}{rl}
& \left.\begin{array}{l}
1 \\
1
\end{array}\right) \\
\hline & 1 \\
0
\end{array}\right)
$$

\therefore simplified exprenim in: $y z+x \bar{z}$

Q Simplify: $f=\bar{A} \bar{B} \bar{C}+\overline{B C} \bar{D}+\bar{A} B C \bar{D}+A \bar{B} \bar{C}$
Sol: 4 - variable k map is

$A B$	11				
0	0	00			
0	10				
1	1				
10					

Now, we Finer f in the terms of boolean expromion. value of arty of variable in missing. ten afile making $K-m p$. we consider the value of missing variate as both 0 \& 1

$$
\begin{aligned}
& \text { both } 0 \& 1 \\
& \therefore f=\underbrace{\frac{A}{B} \bar{C}}_{\downarrow} \\
& \downarrow
\end{aligned}+\underbrace{\bar{B} C \bar{D}}_{\text {Air missing }}+\bar{A} B C \bar{D}+\underbrace{A \bar{B} \bar{C}}_{\downarrow \text { missing }}
$$

Din missing Airmissing Din missing

$$
=000+010+0110+100
$$

Now, consider value of missing variable in both 0 \& 1 .

$$
=\underbrace{(0000,0001)+(0010,1010)+0110+(1000,1001)}_{\downarrow \text { cell Coitions whose value }}
$$

cell positions whore value will be 1 .

$A B$| 10 | | | | |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 1 | | |
| 0 | 1 | | | |
| | 1 | | | |
| | | | | |
| | | | | |

Fig. Cell value $=1$ for cell potion 0000

Now, cell value $=1$. for cell position. 0001
$\Rightarrow K$-m es :

$A B$| $\angle D$ | 00 | 01 | | 11 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | | | |
| 0 | | | | | |
| 1 | | | | | |
| 10 | | | | | |
| | | | | | |

If. Putting value $=1$, for the cell poitions:

$$
0010,1010,0110,1000,1001
$$

$\Rightarrow K-m p$ will be :

$A B C D$	00	01	11	10
0	1	1		1
01				1
11				
10	1	1		1

Now, as Fer rules of k-mp:
\&) Groups must contain $1,2,4,8$ or in genera 2^{h} cells.
(2) Groups may wrap around the tattle. The leftmost cell in a roe w may te grouped with the rightmost cell and the top cell in a column may te grouped with the bottom cell.

References :

[1] Composed by David Belton
http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html
[2] Eric Coates (Revision $14.01 \quad 18^{\text {th }}$ July 2020)
https://learnabout-electronics.org/Digital/dig24.php

