
Abhinav Sharma Page 25

Computer System Architecture
COMP201TH

Lecture-4

Karnaugh Maps (K-Map)

 K Map:

o Karnaugh map is a method of simplifying Boolean algebra

expressions.

o It is actually a truth table in another form.

o It offers a graphical method of reducing a digital circuit to its

minimum number of gates.

o Karnaugh maps can be used on small circuits having 2 to 3 inputs

as an alternative to Boolean algebra and on more complex circuits

having up to 6 inputs; it can provide quicker and simpler

minimisation than Boolean algebra.

Fig. : Representation of K-map for 2,3 and 4 variables respectively

 Constructing K-maps:

o The shape and size of the map is dependent on the number of

binary inputs in the circuit to be analysed.

o 2 input circuits with inputs A and B require maps with 22 = 4cells.

o n input circuit will require map with 2n cells.

Abhinav Sharma Page 26

o In K maps, the cells are ordered in Gray Code and each cell position

represents on combination of input conditions while each cell value

represents the corresponding output value.

 Gray code is an ordering of the binary number system such

that two successive values differ in only one bit. E.g. the

representation of the (1)10 in binary would normally be 01 and

(2)10 would be 10.

 In Gray code, these values are represented as 01 and 11,

respectively.

Fig.: Corresponding Gray codes of Binary numbers

 Example of K-Map:

o Simplify A + A` B by use of Karnaugh Map.

f = A+A`B minterm expression A`=0 and A=1.

In the expression, first see first term is A, here we will take value of B as both 0

and 1.

Remember, while using K-map if one variable is not specified then we

should consider its value both 0 and 1.

e.g. if f = AB +AB`C+A`BC`

here in the first term AB value of C is not specified, so when computing

for K map, we will consider value of C as both 0 and 1.

Abhinav Sharma Page 27

K map for two variable is:

Now, K-map for f = A + A`B will be:

 1

1 1

In K-map, we will put 1 in the cell where in value of A and B are specified in the

Boolean expression i.e. f = A + A`B -> its in minterm expression,

So f = 1 + 01.

Now, as said earlier: In the expression, first see first term is A, here we will take

value of B as both 0 and 1.

So, for the given Boolean expression we will take first term as 10 and 11 as

value of B is not given so we are considering it both 0 and 1.

Now see, we have put 1 in the cell where cell positions are 10, 11 and 01.

Next step is: we will group adjacent 1’s and choose common between them from

their cell positions.

 1

 1

0

0

B
A

0 0

0

1

0

1

0

0

0

B
A

0 0

0

1

0

1

0

0

0

B
A

0 0

0

1

0

1

0

1

1 1

Abhinav Sharma Page 28

Now , first group (vertically): 01

 11

 Common is 1 which is B

Now, second group (horizontally): 10

 11

 Common is 1 which is A.

So, the solution is A+B.

 Rules for simplifying Boolean expressions using K Maps [1, 2]:

Abhinav Sharma Page 29

Abhinav Sharma Page 30

 A square containing 1 should not be left alone to be included in the

final expression if there is a possibility of its inclusion in a group of

two squares containing 1s. Similarly, a group of two 1-squares (i.e.

square containing 1) should not be made if these 1-square can be

included in a group of four 1-squares and so on.

 Groups may wrap around the table. The leftmost cell in a row may be

grouped with the rightmost cell and the top cell in a column may be

grouped with the bottom cell.

Abhinav Sharma Page 31

Abhinav Sharma Page 32

Abhinav Sharma Page 33

Abhinav Sharma Page 34

Abhinav Sharma Page 35

Abhinav Sharma Page 36

Abhinav Sharma Page 37

Abhinav Sharma Page 38

References :

[1] Composed by David Belton
http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html

[2] Eric Coates (Revision 14.01 18th July 2020)
https://learnabout-electronics.org/Digital/dig24.php

http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html
https://learnabout-electronics.org/Digital/dig24.php

