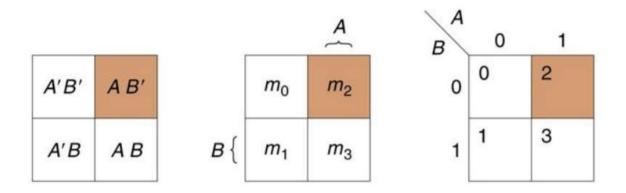
Computer System Architecture COMP201TH Lecture-6

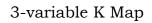
Implicants, Prime Implicants, Essential Prime Implicants

• From the last lecture, we know; K map for 2, 3 and 4-variables is:



2-variable K Map

CAL	B A' B' 00	A' B 01	A B 11	<i>A B'</i> 10	AB	00 01	11	10
	A' B' C'	A' B C'	ABC'	A B'C'	0	2	6	4
C 1	A' B' C	A' B C	ABC	A B'C	1	3	7	5



CD	00	01	11	10	CD	B 00	01	11	10
00	0	4	12	8		A'B'C'D'		A B C' D'	
01	1	5	13	9	01	A'B'C'D	A'B C'D	A B C'D	A B'C'D
11	3	7	15	11	11	A'B'CD	A'BCD	ABCD	A B'C D
10	2	6	14	10	10	A'B'CD'	A'B C D'	ABCD	A B'C D'

4-variable K map

• Covering of a function:

 \circ A switching function $f(x_1, x_2, ..., x_n)$ is said to cover $g(x_1, x_2, ..., x_n)$ denoted by "f is superset of g" if f assumes true value whenever g does.

	g	f	
0	0	1	
1	1	1	-
2	0	0	/
3	0	0	

Whenever g is 1, f is also 1 i.e. f is having true value whenever g is true.

$\begin{array}{cc} \mathbf{f} & \mathbf{g} \\ \{\mathbf{0},\mathbf{1}\} \supseteq \{\mathbf{1}\} \end{array}$

Here f contains minterm₀ and minterm_{1.} So, we can say: f covers g

If g has x minterms and g is a function of n variables, then number of covering functions for g is
²ⁿ-x

2^{.2}.

• Implicant:

- A group of one or more 1's which are adjacent and can be combined on a Karnaugh Map is called an implicant.
 - i.e. in this we include group of 1 1's, 2 1's, 4 1's, 8 1's, 16 1's....2ⁿ 1's i.e. while grouping 1's we group them in power of 2 and if single 1 is left then its also taken as a group.
- From the point of view of the map, an implicant is a rectangle of 1,2,4,8,... 2ⁿ 1's.
- In other words, an implicant is a product term that can cover minterms of a function.

• Prime Implicant:

- Largest possible group of 1's. In other words, the biggest group of 1's which can be circled to cover a given 1 is called a prime implicant.
- To find prime implicants, we use all possible groups formed in K-map.
 - A minimal solution will never contain non-prime implicants.

• Essential Prime Implicant:

- prime implicant in which at least there is single 1 which cannot be combined in any other way.
 - Essential prime implicants are those implicants which always appear in final solution.
- These are those groups which cover at least one minterm that can't be covered by any other prime implicant.

• Non Essential Prime Implicants:

- A prime implicant in which all of its covered 1 squares are covered by one or more other prime implicants.
- $\circ\,$ i.e. a prime implicant where every one of its squares is part of another prime implicant.

Why do we need all these implicants?

- While finding minimum SOP expressions from K map the only product term we need to care about are prime implicants.
- Essential prime implicants are the prime implicants that must be used in any min SOP expression. It may have non-essential prime implicants only if the essential prime implicants don't cover all squares.
- There can be more than one simplified SOP due to the selection of nonessential prime implicants.

Procedure for finding the SOP form a K Map:

- Step 1: Form the 2-,3-, or 4- variable K map as appropriate for the Boolean function.
- Step 2: Identify all essential prime implicants for 1s in the K map.
- Step 3: Identify non-essential prime implicants for 1s in the K map.
- Step 4: For each essential and one selected non-essential prime implicant from each set, determine the corresponding product term.
- Step 5: Form a sum-of-products with all product terms from previous steps.

Examples:

