
Database Management System
Lecture: 6

Data Modeling Using the Entity-Relationship (ER) Model

Example: Consider the following scenario to design a database for a company:

 The company is organized into departments. Each department has a

unique name, a unique number, and a particular employee who manages

the department. We keep track of the start date when that employee

began managing the department. A department may have several

locations.

 A department controls a number of projects, each of which has a unique

name, a unique number, and a single location.

 We store each employee's name, social security number, address, salary,

sex, and birth date. An employee is assigned to one department but may

work on several projects, which are not necessarily controlled by the

same department. We keep track of the number of hours per week that

an employee works on each project. We also keep track of the direct

supervisor of each employee.

 We want to keep track of the dependents of each employee for insurance

purposes. We keep each dependent's first name, sex, birth date, and

relationship to the employee.

We will design ER model for the above said database.

Fig: An ER Schema diagram for above said COMPANY database.

The Entity-Relationship Model:

 ER Model is a conceptual data model that views the real world as entities

and relationships. For the database designer, the utility of the ER model is:

 It maps well to the relational model. The constructs used in the ER

model can easily be transformed into relational tables.

 It is simple and easy to understand with a minimum of training.

Therefore, the model can be used by the database designer to

communicate the design to the end user.

 The model can be used as a design plan by the database developer to

implement a data model in a specific database management software.

Basic Constructs of E-R Modeling:

 The ER model view the real world as a construct of entities and

association between entities.

Entities:

Entities are the principal data object about which information is to be

collected. Entities are usually recognizable concepts, either concrete or

abstract, such as person, places, things, or events which have relevance to the

database. Some specific examples of entities are EMPLOYEES, PROJECTS,

INVOICES. An entity is analogous to a table in the relational model.

Entities are classified as independent or dependent (in some

methodologies, the terms used are strong and weak, respectively).

An independent entity is one that does not rely on another for

identification. A dependent entity is one that relies on another for

identification.

 An entity occurrence (also called an instance) is an individual

occurrence of an entity. An occurrence is analogous to a row in the relational

table.

Entity Types and Entity Sets: An entity type defines a collection (or

set) of entities that have same attributes. Each entity type in the database is

described by its name and attributes.

A database usually contains group of entries that are similar. E.g. a

company employing hundreds of employees may want to store similar

information concerning each of the employees. These employee entities share

the same attributes, but each entity has its own value(s) for each attribute.

Key Attributes of an Entity Type: An important constraint on the

entities of an entity type is the key or uniqueness constraint on attributes. An

entity type usually has an attribute whose values are distinct for each

individual entity in the entity set. Such an attribute is called a key attribute

and its values can be used to identify each entity uniquely.

E.g. for the PERSON entity type, a typical key attribute is

SocialSecurityNumber. Sometimes, several attributes together form a key,

meaning that the combination of the attribute values must be distinct for each

entity.

Weak and Strong Entity Types: Entity types that have a key attribute

are called strong entity types.

Entity types that do not have key attributes of their own are called weak

entity types. Entities belonging to a weak entity type are identified by being

related to specific entities from another entity type in combination with one of

their attribute values. This other entity type is called the identifying or owner

entity type and such type of relationship that relates a weak entity type to its

owner is called the identifying relationship of the weak entity type.

Attributes:

 Attributes describe the entity of which they are associated. A particular

instance of an attribute is a value. E.g. “Rohit Sharma” is one value of the

attribute Name.

The domain of an attribute is the collection of all possible values an attribute

can have. The domain of Name is a character string.

Attributes can be classified as identifiers or descriptors.

 Identifiers (also called keys) uniquely identify an instance of an entity.

 A descriptor describes a non unique characteristic of an entity instance.

Composite versus Simple (Atomic Attributes): Composite attributes

can be divided into smaller subparts, which represent more basic

attributes with independent meanings.

e.g. the Address attribute of the employee entity can be subdivided into

street address, City, state and Zip.

Attributes that are not divisible are called simple or atomic attributes.

Single-Valued versus Multi-valued Attributes: Most attributes have a

single value for a particular entity such attributes are called single-

valued. E.g. Age is a single-valued attribute of a person.

In some cases an attribute can have a set of values for the same entity

e.g. a color attribute for a car. Cars with one color have a single value

whereas two-tone cars have two values for Colors. Such attributes are

called multivalued.

Stored versus Derived Attributes: In some cases, two (or more)

attribute values are related –e.g. the Age and Birth Date attributes of a

person. For a particular person, the value of Age can be determined from

the current (today’s) date and the value of that person’s BirthDate. The

Age attribute is hence called a derived attribute and is said to be derived

from the BirthDate attribute which is called a stored attribute.

Complex Attributes: Composite and multivalued attributes can be

nested in an arbitrary way.

We can represent arbitrary nesting by grouping components of a

composite attribute between parentheses () and separating the

components with commas and by displaying multivalued attributes

between braces { }. Such attributes are called complex attributes. E.g. if

a person can have more than one residence and each residence can have

multiple phones, an attribute AddressPhone for a person can be specified

as:

Relationships:

 A relationship represents an association between two or more entities. An

example of a relationship would be:

 Employees are assigned to projects.

 Projects have subtasks.

 Departments manage one or more projects

Relationships are classified in terms of degree, connectivity, cardinality and

existence.

Degree of a Relationship:

 The degree of a relationship is the number of entities associated with the

relationship.

The n-ary relationship is the genral form for degree n e.g. binary and ternary

where degree is 2 and 3 respectively.

Binary relationships, the association between two entities is the most common

type in the real world.

A recursive binary relationship occurs when an entity is related to itself. E.g.

"some employees are married to other employees".

A ternary relationship involves three entities and is used when a binary

relationship is inadequate.

Many modeling approaches recognize only binary relationships. Ternary or n-

ary relationships are decomposed into two or more binary relationships.

Connectivity and Cardinality:

 The connectivity of a relationship describes the mapping of associated

entity instances in the relationship.

The values of connectivity are “one” or “many”. The cardinality of a relationship

is the actual number of related occurrences for each of the two entities.

The basic types of connectivity for relations are:

 One-to-One (1:1): A one-to-one (1:1) relationship is when at most one

instance of a entity A is associated with one instance of entity B. e.g.

employees in the company are each assigned their own office. For each

employee there exists a unique office and for each office there exists a

unique employee.

 One-to-Many (1:N) : A 1:N relationship is when for one instance of entity

A, there are zero, one or many instances of entity B, but for one instance

of entity B, there is only one instance of entity A. An example is: A

department has many employees. Each employee is assigned to one

department.

 Many-to-Many (M:N): A many-to-many (M:N) relationship, sometimes

called non-specific, is when for one instance of entity A, there are zero,

one, or many instances of entity B and for one instance of entity B there

are zero, one, or many instances of entity A. An example is: employees

can be assigned to no more than two projects at the same time; projects

must have assigned at least three employees A single employee can be

assigned to many projects; conversely, a single project can have assigned

to it many employee. Here the cardinality for the relationship between

employees and projects is two and the cardinality between project and

employee is three. Many-to-many relationships cannot be directly

translated to relational tables but instead must be transformed into two

or more one-to-many relationships using associative entities.

Direction: The direction of a relationship indicates the originating entity of

a binary relationship. The entity from which a relationship originates is the

parent entity; the entity where the relationship terminates is the child

entity.

The direction of a relationship is determined by its connectivity.

In a one-to-one relationship, the direction is from the independent entity to

a dependent entity. If both entities are independent, the direction is

arbitrary.

With one-to-many relationships, the entity occurring once is the parent.

The direction of many-to-many relationships is arbitrary.

Notations for ER Diagram:

