Computer System Architecture COMP201Th Lecture: 17 Number Systems

Number systems are the technique to represent numbers in the computer system architecture. Electronic and Digital systems may use a variety of different number systems viz.:

- Binary (base 2)
- Octal (base 8)
- Decimal (base 10)
- Hexadecimal (base 16)

A number N in base or radix b can be written as:

 $(N)_{b} = d_{n-1} d_{n-2} - - - d_{1} d_{0} \cdot d_{-1} d_{-2} - - - - - d_{-m}$

In the above, d_{n-1} to d_0 is integer part, then follows a radix point and then d_{-1} to d_{-m} is fractional part.

d_{n-1} = Most Significant bit (MSB)

d_{-m} = Least Significant bit (LSB)

System	Radix	Allowable Digits
Binary	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Decimal	10	0,1,2,3,4,5,6,7,8,9
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Conversion among Number Systems:

- Decimal number into binary equivalent:
 - Write down the decimal number and continually divide it by 2 to give a result and a remainder of either a "1" or "0" until the final result equals zero.

e.g. Convert $(39)_{10} = ()_2$

$$(39)_{10} = (?????)_2$$

 $(39)_{10} = (100111)_2$

• Decimal Fraction to binary equivalent:

 Multiply the fraction by 2 keeping notice of the resulting integer and fractional part. Continue multiplying by 2 until you get a resulting fraction equal to zero. Then just write out the integer parts from the results of each multiplication.

Fraction	Fraction *2	Remainder Fraction	Integer	
0.375	0.750	0.75	0	MSB
0.750	1.50	0.50	1	
0.50	1.00	0.00	1	LSB

$(0.375)_{10} = (????)_2$

• Decimal Number to Octal Number:

e.g. $(461)_{10} = (???)_8$

$$(461)_{10} = (???)_{8}$$

$$(461)_{10} = (715)_8$$

• Decimal Number to Hexadecimal Number:

e.g. $(10767)_{10} = (????)_{16}$

 $(10767)_{10} = (????)_{16}$

$$(10767)_{10} = (2A0F)_{16}$$

Hex	Decimal	
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
в	11	
с	12	
D	13	
E	14	
F	15	
	Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F	

• Binary to Decimal Conversion:

e.g. $(10111)_2 = (????)_{10}$

$$(10111)_{2} = (????)_{10}$$

 $1 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\ 1 = 2^{0} & 1 = 2^{0} \\ 1 = 2^{0} + 1 + 2^{1} + 1 + 2^{2} + 0 + 2^{3} + 1 + 2^{4} \\ 1 = 2^{0} & 1 = 2^{0}$

1+2+4+16 = 23

• Binary Fraction to Decimal Fraction Conversion:

e.g. $(0.1011)_2 = (????)_{10}$

$$(0.1011)_2 = (????)_{10}$$

1*2⁻¹ + 0*2⁻² + 1*2⁻³ + 1*2⁻⁴ =0.5+0+0.125+0.0625 =0.6875

 $(0.1011)_2 = (0.6875)_{10}$

• Binary to Octal Conversion:

• Here we make group of three bits starting from LSB:

```
e.g. (1101110)_2 = (????)_8
```


• Binary to Hexadecimal Conversion:

 $\circ~$ Here we will make group of 4 bits starting from LSB.

```
e.g.(1101011010)_2 = (?????)_{16}
```

$(1101011010)_2 = (????)_{16}$

11 0101 1010

• Octal to Binary Conversion:

• Here, we just write binary equivalent of the digit.

e.g. $(527)_8 = (????)_2$

= (101) (010) (111)

= (101010111)2

• Octal to Decimal Conversion:

e.g. $(140)_8 = (????)_{10}$

= (96)₁₀

- Octal to Hexadecimal Conversion:
 - First, convert the octal number to binary number.
 - Then, make group of four bits starting from LSB and then convert to equivalent hexadecimal.

e.g. $(456)_8 = (????)_{16}$

= (100) (101)(110)

=(100101110)

Now (100101110) \rightarrow make group of 4 bits starting from LSB

= (1) (0010) (1110)

=(0001) (0010) (1110)

= (1) (2) (E)

= (12E)₁₆

• Hexadecimal to Binary Number:

 \circ Just write binary equivalent of each digit.

e.g. (4F2D)₁₆ = (????)₂

= (0100)(1111)(0010)(1101)

=(0100111100101101)2

- Hexadecimal to Octal Number:
 - First write the binary equivalent.
 - Then make group of 3 bits starting from LSB and write octal equivalent.

e.g. $(5A)_{16} = (0101) (1010)$

- = (01011010)₂
- = (01) (011) (010)
- = (001) (011) (010)

 $= 1 3 2 = (132)_8$

- Hexadecimal to Decimal Number:
- e.g. $(1A53)_{16} = (3*16^{\circ}) + (5*16^{\circ}) + (10 * 16^{\circ}) + (1*16^{\circ})$

= 3+80+2560+4096

= 6739