Computer System Architecture COMP201Th

Lecture: 17

Number Systems

Number systems are the technique to represent numbers in the computer system architecture. Electronic and Digital systems may use a variety of different number systems viz.:

- Binary (base 2)
- Octal (base 8)
- Decimal (base 10)
- Hexadecimal (base 16)

A number N in base or radix b can be written as:

$$
(\mathrm{N})_{\mathrm{b}}=\mathrm{d}_{\mathrm{n}-1} \mathrm{~d}_{\mathrm{n}-2^{------}} \mathrm{d}_{1} \mathrm{~d}_{0} \cdot \mathrm{~d}_{-1} \mathrm{~d}_{-2^{-----------} \mathrm{d}_{-m}}
$$

In the above, $\mathrm{d}_{\mathrm{n}-1}$ to d_{0} is integer part, then follows a radix point and then d_{-1} to d-m is fractional part.
$\mathrm{d}_{\mathrm{n}-1}=$ Most Significant bit (MSB)
$\mathrm{d}_{\mathrm{m}}=$ Least Significant bit (LSB)

System	Radix	Allowable Digits
Binary	2	0,1
Octal	8	$0,1,2,3,4,5,6,7$
Decimal	10	$0,1,2,3,4,5,6,7,8,9$
Hexadecimal	16	$0,1,2,3,4,5,6,7,8,9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$

Conversion among Number Systems:

- Decimal number into binary equivalent:
- Write down the decimal number and continually divide it by 2 to give a result and a remainder of either a " 1 " or " 0 " until the final result equals zero.
e.g. Convert (39) $)_{10}=()_{2}$

$$
(39)_{10}=(? ? ? ? ?)_{2}
$$

2	39					
2	19	1	LSB			
2	9	1				
2	4	1				
2	2	0				
2	1	0				
	0	1	$M S B$			

$$
(39)_{10}=(100111)_{2}
$$

- Decimal Fraction to binary equivalent:
- Multiply the fraction by 2 keeping notice of the resulting integer and fractional part. Continue multiplying by 2 until you get a resulting fraction equal to zero. Then just write out the integer parts from the results of each multiplication.
$(0.375)_{10}=(? ? ? ? ?)_{2}$

Fraction	Fraction *2	Remainder Fraction	Integer	
0.375	0.750	0.75	0	MSB
0.750	1.50	0.50	1	
0.50	1.00	0.00	1	LSB

- Decimal Number to Octal Number:
e.g. $(461)_{10}=(? ? ?)_{8}$

$$
(461)_{10}=(? ? ?)_{8}
$$

| 8 | 461 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 57 | 5 | LSD | | $(715)_{8}$ |
| 8 | 7 | 1 | | | |
| | 0 | 7 | MSD | | |

$$
(461)_{10}=(715)_{8}
$$

- Decimal Number to Hexadecimal Number:
e.g. $(10767)_{10}=(? ? ? ?)_{16}$

$$
(10767)_{10}=(? ? ? ?)_{16}
$$

16	10767	$15=F$010			
16	672				
16	42				
16	2		${ }_{\text {Binary }}$	Hex	Docimal
	0	$\left.{ }_{2}{ }^{1} 10767\right)^{\prime}=(2 A O F)$			
			${ }_{\substack{001 \\ 0001 \\ 0010}}^{0010}$	2	$\frac{1}{2}$
			(oil	3 4 4 4	
			(1010	${ }_{7}^{6}$	${ }_{6}$
			(1000	8	8
			(1010	${ }_{\text {a }}$	${ }^{10}$
			(1100	$\stackrel{\text { c }}{\substack{c \\ 0}}$	
			$\begin{aligned} & 10101 \\ & 11121 \end{aligned}$	${ }_{8}^{\text {\% }}$	$\xrightarrow{13} \begin{aligned} & 14 \\ & 15\end{aligned}$

- Binary to Decimal Conversion:
e.g. $(10111)_{2}=(? ? ? ?)_{10}$
$(10111)_{2}=(? ? ? ? ?)_{10}$
$\begin{array}{lllll}1 & 0 & 1 & 1 & 1 \\ 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$

$1^{*} 2^{0}+1^{*} 2^{1}+1^{*} 2^{2}+0^{*} 2^{3}+1^{*} 2^{4}$
$1+2+4+16=23$
- Binary Fraction to Decimal Fraction Conversion:
e.g. $(0.1011)_{2}=(\text { ???? })_{10}$

$$
\left.\begin{array}{l}
(0.1011)_{2}=(? ? ? ?)_{10} \\
\bullet \\
1
\end{array}\right) 0 \begin{array}{lll}
1 & 1 & 1 \\
2^{-1} & 2^{-2} & 2^{-3}
\end{array} 2^{-4}
$$

$$
(0.1011)_{2}=(0.6875)_{10}
$$

- Binary to Octal Conversion:
- Here we make group of three bits starting from LSB:
e.g. $(1101110)_{2}=(\text { ????? })_{8}$
$(1101110)_{2}=(? ? ? ? ?)_{8}$ 1101110

001101110

$$
156=(156)_{8}
$$

- Binary to Hexadecimal Conversion:
- Here we will make group of 4 bits starting from LSB. e.g. $(1101011010)_{2}=(\text { ????? })_{16}$

$(1101011010)_{2}=(? ? ? ? ?)_{16}$ 1101011010 \square
 001101011010
 $$
35 A=(35 A)_{16}
$$

- Octal to Binary Conversion:
- Here, we just write binary equivalent of the digit.
e.g. $(527)_{8}=(? ? ? ? ?)_{2}$

$$
\begin{aligned}
& =(101)(010)(111) \\
& =(101010111)_{2}
\end{aligned}
$$

- Octal to Decimal Conversion:
e.g. $(140)_{8}=(? ? ? ?)_{10}$

$$
\begin{aligned}
& =0 * 8^{0}+4 * 8^{1}+1 * 8^{2} \\
& =(96)_{10}
\end{aligned}
$$

- Octal to Hexadecimal Conversion:
- First, convert the octal number to binary number.
- Then, make group of four bits starting from LSB and then convert to equivalent hexadecimal.
e.g. $(456)_{8}=(? ? ? ?)_{16}$
$=(100)(101)(110)$
$=(100101110)$

Now (100101110) \rightarrow make group of 4 bits starting from LSB
$=(1)(0010)(1110)$
$=(0001)(0010)(1110)$
$=(1)(2)(E)$
$=(12 \mathrm{E})_{16}$

- Hexadecimal to Binary Number:
- Just write binary equivalent of each digit.
e.g. $(4 F 2 D)_{16}=(? ? ? ?)_{2}$
$=(0100)(1111)(0010)(1101)$
$=(0100111100101101)_{2}$
- Hexadecimal to Octal Number:
- First write the binary equivalent.
- Then make group of $\mathbf{3}$ bits starting from LSB and write octal equivalent.
e.g. $(5 A)_{16}=(0101)(1010)$

$$
\begin{aligned}
& =(01011010)_{2} \\
& =(01)(011)(010) \\
& =(001)(011)(010) \\
& =132=(132)_{8}
\end{aligned}
$$

- Hexadecimal to Decimal Number:

$$
\begin{aligned}
& \text { e.g. }(1 \mathrm{~A} 53)_{16}=\left(3^{*} 160\right)+\left(5^{*} 16^{1}\right)+\left(10 * 16^{2}\right)+\left(1^{*} 16^{3}\right) \\
& =3+80+2560+4096 \\
& =6739
\end{aligned}
$$

