
Abhinav Sharma Page 9

Computer System Architecture
COMP201TH

Lecture-2

Boolean Algebra

“The general laws of Nature are not, for the most part, immediate objects of

perception….They are in all cases, and in the strictest sense of the term,

probable conclusions.”

…George Boole

Introduction:

 George Boole, a 19th century English Mathematician, developed a system

of logical algebra by which reasoning can be expressed mathematically. In 1854,

Boole published a classic book, “An Investigation of the Laws of thought” on

which he founded the Mathematical theories of Logic and Probabilities.

 Boole’s system of logical algebra, now called Boolean algebra, was

investigated a tool for analyzing and designing relay switching circuits by

Claude E. Shannon at the Massachusetts Institute of Technology in 1938.

Shannon, a research assistant in the Electrical Engineering Department, wrote

a thesis entitled “A symbolic analysis of Relay and Switching Circuits”. As a

result of his work, Boolean algebra is now, used extensively in the analysis and

design of logical circuits.

 Today, Boolean algebra is the backbone of computer circuit

analysis.

 Boolean Algebra:

o Boolean algebra is a form of algebra that deals with single digit binary

values and variables.

o Boolean algebra has only two mathematical operations:

 Addition

 Multiplication

 These operations are associated with the OR gate and

the AND gate, respectively.

o The purpose of Boolean algebra is to facilitate the analysis and design of

digital circuits. It provides a convenient tool to:

 Express in algebraic form a truth table relationship between

binary variables.

 Express in algebraic form the input-output relationship of

logic diagrams.

 Find simpler circuits for the same function.

Abhinav Sharma Page 10

 Logic Symbols that you might see in Boolean expressions:

 Basic identities in Boolean Algebra:

 Annulment Law:

A variable ANDed with 0 gives 0, while a variable ORed with 1 gives 1 i.e.

 Identity Law:

In this law, variable remains unchanged if its ORed with 0 or ANDed with 1

i.e.

 Idempotent Law:

A variable remain unchanged when it is ORed or ANDed with itself i.e.

 Complement Law:

If a complement is added (ORed) to a variable it gives one, if a variable is

multiplied (ANDed) with its complement it results in 0 i.e.

 Involution Law:

A variable with two negation symbol gets cancelled out and original variable

is obtained i.e.

Abhinav Sharma Page 11

 Commutative Law:

A variable order does not matter in this law i.e.

 Associative Law:

The order of operation does not matter if the priority of variables is same.

 Distributive Law:

This law governs opening up of brackets i.e.

 Absorption Law:

This law involves absorbing the similar variables i.e.

 Simplification Law:

X+X`Y = (X+X`) (X+Y) (Distributive law X+YZ = (X+Y) (X+Z)

 = 1. (X+Y) (X+X` =1)

 = X+Y

 DeMorgan’s Law:

Abhinav Sharma Page 12

 E.g. (X+Y) (X+Z) = X+YZ

This rule can be proved as follows:

 (X+Y) (X+Z) = XX +XZ +XY+YZ (distributive law (X(Y+Z) = XY+XZ))

 = X+XZ+XY+YZ (X.X=X)

 = X(1+Z) +XY+YZ (X+1=1)

 = X.1+XY+YZ

 = X(1+Y)+YZ (1+Y=1)

 = X+YZ

DeMorgan’s Theorems:

o DeMorgan’s first theorem is:

Abhinav Sharma Page 13

o DeMorgan’s Second theorem is:

Fig. Gate equivalencies and the corresponding truth tables that illustrate

DeMorgan’s theorems and that NOR and NAND gates have two distinct graphic

symbols.

Abhinav Sharma Page 14

Examples:

1) Simplify y = A+ A`. B

 = A. (B+1) + A`.B (Annulment Law: 1+B =1)

 = A.B + A + A`.B (Distributive Law)

 = A.B + A`.B + A (Commutative Law)

 = (A+A`)B + A (Distributive Law)

 = B+A

2) Simplify y = A` + B + A . B . C`

 = A` (BC` +1) +B` + ABC` (X+1 = 1 annulment law)

 = A`BC` + A` + B` +ABC` (distributive law)

 =(A`+A) BC` + A` + B` (Commutative and distributive law)

 = BC` + A` + B`

3) Simplify y = A`B`C` +A`BC` +A`BC+ AB`C`+ABC`+ABC

 = A`C`(B`+B) + AC`((B`+B) + BC (A`+A)

 =A`C`+AC`+BC

 = (A`+A)C` +BC

 = C` + BC

 = (B+C`) (C+C`) (distributive law)

 = B+C`

