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Computer System Architecture 
COMP201TH 

Lecture-2 

Boolean Algebra 

 

“The general laws of Nature are not, for the most part, immediate objects of 

perception….They are in all cases, and in the strictest sense of the term, 

probable conclusions.” 

…George Boole 

 

Introduction: 

 George Boole, a 19th century English Mathematician, developed a system 

of logical algebra by which reasoning can be expressed mathematically. In 1854, 

Boole published a classic book, “An Investigation of the Laws of thought” on 

which he founded the Mathematical theories of Logic and Probabilities. 

 Boole’s system of logical algebra, now called Boolean algebra, was 

investigated a tool for analyzing and designing relay switching circuits by 

Claude E. Shannon at the Massachusetts Institute of Technology in 1938. 

Shannon, a research assistant in the Electrical Engineering Department, wrote 

a thesis entitled “A symbolic analysis of Relay and Switching Circuits”. As a 

result of his work, Boolean algebra is now, used extensively in the analysis and 

design of logical circuits. 

  Today, Boolean algebra is the backbone of computer circuit 

analysis. 

 

 

 Boolean Algebra: 

o Boolean algebra is a form of algebra that deals with single digit binary 

values and variables. 

o Boolean algebra has only two mathematical operations: 

 Addition 

 Multiplication 

 These operations are associated with the OR gate and 

the AND gate, respectively. 

o The purpose of Boolean algebra is to facilitate the analysis and design of 

digital circuits. It provides a convenient tool to: 

 Express in algebraic form a truth table relationship between 

binary variables. 

 Express in algebraic form the input-output relationship of 

logic diagrams. 

 Find simpler circuits for the same function. 
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 Logic Symbols that you might see in Boolean expressions: 

 
 

 Basic identities in Boolean Algebra: 

 Annulment Law: 

A variable ANDed with 0 gives 0, while a variable ORed with 1 gives 1 i.e. 

 

 

 Identity Law: 

In this law, variable remains unchanged if its ORed with 0 or ANDed with 1 

i.e. 

 
 

 Idempotent Law:  

A variable remain unchanged when it is ORed or ANDed with itself i.e. 

 

 

 Complement Law: 

If a complement is added (ORed) to a variable it gives one, if a variable is 

multiplied (ANDed) with its complement it results in 0 i.e.  

 

 Involution Law: 

A variable with two negation symbol gets cancelled out and original variable 

is obtained i.e. 
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 Commutative Law: 

A variable order does not matter in this law i.e. 

 

 Associative Law: 

The order of operation does not matter if the priority of variables is same. 

 

  Distributive Law: 

This law governs opening up of brackets i.e. 

 

 Absorption Law: 

This law involves absorbing the similar variables i.e. 

 

 Simplification Law: 

 

X+X`Y = (X+X`) (X+Y)        (Distributive law X+YZ = (X+Y) (X+Z) 

  = 1. (X+Y)  (X+X` =1) 

  = X+Y 

 DeMorgan’s Law: 
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  E.g. (X+Y) (X+Z) = X+YZ 

This rule can be proved as follows: 

 (X+Y) (X+Z) = XX +XZ +XY+YZ      (distributive law (X(Y+Z) = XY+XZ)) 

           = X+XZ+XY+YZ          (X.X=X) 

   = X(1+Z) +XY+YZ  (X+1=1) 

   = X.1+XY+YZ 

   = X(1+Y)+YZ   (1+Y=1) 

   = X+YZ 

DeMorgan’s Theorems: 

o DeMorgan’s first theorem is: 
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o DeMorgan’s Second theorem is: 

 
 

 

 
Fig. Gate equivalencies and the corresponding truth tables that illustrate 

DeMorgan’s theorems and that NOR and NAND gates have two distinct graphic 

symbols. 
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Examples: 

1) Simplify y = A+ A`. B 

  = A. (B+1) + A`.B  (Annulment Law: 1+B =1) 

  = A.B + A + A`.B  (Distributive Law) 

  = A.B + A`.B + A   (Commutative Law) 

  = (A+A`)B + A  (Distributive Law) 

  = B+A 

 

2) Simplify y = A` + B + A . B . C` 

  = A` (BC` +1) +B` + ABC`  (X+1 = 1 annulment law) 

  = A`BC` + A` + B` +ABC`  (distributive law) 

  =(A`+A) BC` + A` + B`  (Commutative and distributive law) 

  = BC` + A` + B` 

 

3) Simplify y = A`B`C` +A`BC` +A`BC+ AB`C`+ABC`+ABC 

  = A`C`(B`+B) + AC`((B`+B) + BC (A`+A) 

  =A`C`+AC`+BC 

  = (A`+A)C` +BC 

  = C` + BC 

  = (B+C`) (C+C`)    (distributive law) 

  = B+C` 

 

 

 

 

 

 

 


