Techniques of Problem Solving

FlowChart

* A flowchart is a type of diagram that represents
an algorithm, workflow, or process. The flowchart
shows the steps as boxes of various kinds, and
their order by connecting the boxes with arrows.
This diagrammatic representation illustrates a
solution model to a given problem.

* The process of drawing a flowchart for an
algorithm is known as “flowcharting”.

Basic Symbols used in Flowchart
Designs

* Terminal: The oval symbol indicates Start,
Stop and Halt in a program’s logic flow. A
pause/halt is generally used in a program logic
under some error conditions. Terminal is the
first and last symbols in the flowchart.

Basic Symbols used in Flowchart
Designs

* Input/Output: A parallelogram denotes any
function of input/output type. Program
instructions that take input from input devices
and display output on output devices are
indicated with parallelogram in a flowchart.

Basic Symbols used in Flowchart
Designs

* Process: The rectangle depicts a process such
as a mathematical computation or a variable
assignment.

Basic Symbols used in Flowchart
Designs

* Decision: Diamond symbol represents a
decision point. Decision based operations
such as yes/no question or true/false are
indicated by diamond in flowchart.

Basic Symbols used in Flowchart
Designs

* Connectors: Whenever flowchart becomes
complex or it spreads over more than one
page, it is useful to use connectors to avoid
any confusions. It is represented by a circle.

Basic Symbols used in Flowchart
Designs

* Flow lines: Flow lines indicate the exact
sequence in which instructions are executed.
Arrows represent the direction of flow of
control and relationship among different
symbols of flowchart.

4

Draw a flowchart to add two numbers
entered by user.

. Start |

\J

Declare variables numl, num2 and sum

i
!

Read numl and |
num2

Y

sum<«a+b

Y

| Display sum |

T
. Stop |

Determine and Output Whether
Number N is Even or Odd

Algorithm:
e Step 1: Read number N,
e Step 2: Set remainder as N modulo 2,

e Step 3: If remainder is equal to 0 then number
N is even, else number N is odd,

* Step 4: Print output.

Remainder =N
modulo 2

| =
~_Remainder =0? _ =

Answer = Er:

; ODD

Decision Table

A decision table is a graphical method for explaining
the logic of making decision in tabular format.

Decision table is a brief visual representation for
specifying which actions to perform depending on
given conditions.

It shows conditions and actions in a simplified and
orderly manner.

A decision table is similar to a flow chart in use and its
construction.

It may be used either independently or as a
complement to a flow chart.

Decision Table

* The general format of a decision table has four basic
parts:

1. Action entry:
— It indicates the actions to be taken.

2. Condition entry:

— It indicates conditions which are being met or answers the
guestions in the condition stub.

3. Action stub:
— |t lists statements describing all actions that can be taken.
4. Condition stub:

— It lists all conditions to be tested for factors necessary for
taking a decision.

Decision Table Example

Policy or
Process Name 6 Rules

\

Payroll Poli Rules

ayroll Poli

y Y 4234

) 5 Employee Type SH H |[H Condition 4

Conditions Hours Worked —-|<40/=40|>40 Alternatives

Pay Base Salary X

4 Actions Pay Hourly Wage X X X Action .
Pay Overtime X Entries
Produce Absence Report| |X

S = Salaried Employee; H = Hourly Employee

Decision Table Example

 For example, Rule 1 states that if an employee
is salaried, it doesn't matter how many hours
they worked: the action will always be to pay
them their base salary. In this example, we are
indifferent to the value of the "hours worked"
condition - it's value doesn't matter.

Decision Table Example

* Rule 2: If an employee is hourly and works less
than 40 hours, pay them their hourly wage
and produce an absence report for this
employee.

* Rule 3: If an employee is hourly and works
exactly forty hours, pay them their hourly
wage.

Advantages of Decision table

It provides compact representation of decision making
process.

Tables are easier to draw up than comparable flow
charts. They are easier to change since it is a relatively
simple matter to add conditions, rules and actions to a
table.

Tables force the programmer to think the problem
through. For example, if there are three conditions to
be considered, each of which can be answered yes or
no, then there are 23 or 8 possible paths or rules.

The structure of decision table promotes a logically
complete and consistent problem definition.

Disadvantages of Decision Table

* |t cannot express the complete sequence of
operations to solve a problem therefore it may
be difficult for the programmer to translate
decision table into program.

* |f there are too many alternatives, it is difficult
to list in decision table.

* |t does not show the flow of logic for the
solution to a given problem.

Algorithm

 An algorithm is a well-defined step by step
solution or a series of instructions to solve a
problem.

* Algorithms help to do a task in programming to
get the expected output.

* The Algorithm designed are language-
independent, i.e. they are just plain instructions
that can be implemented in any language, and
yet the output will be the same, as expected.

Characteristics of an Algorithm

* Clear and Unambiguous: Algorithm should be
clear and unambiguous. Each of its steps
should be clear in all aspects and must lead to
only one meaning.

* Well-Defined Inputs: If an algorithm says to
take inputs, it should be well-defined inputs.

* Well-Defined Outputs: The algorithm must
clearly define what output will be yielded.

Characteristics of an Algorithm

Finiteness: The algorithm must be finite, i.e. it
should not end up in an infinite loops or similar.

Feasible: The algorithm must be simple, generic
and practical, such that it can be executed upon
with the available resources. It must not contain
some future technology, or anything.

Language Independent: The Algorithm designed
must be language-independent, i.e. it must be
just plain instructions that can be implemented in
any language, and yet the output will be same, as

expected.

Algorithm

In order to write an algorithm, following things are needed as
a pre-requisite:
* The problem that is to be solved by this algorithm.

* The constraints of the problem that must be considered
while solving the problem.

 The input to be taken to solve the problem.
 The output to be expected when the problem the is solved.
* The solution to this problem, in the given constraints.

Then the algorithm is written with the help of above
parameters such that it solves the problem.

Example: Algorithm to add 3 nhumbers
and print their sum:

1. START
2. Declare 3 integer variables num1, num2 and numa3.

3. Take the three numbers, to be added, as inputs in
variables num1, num2, and num3 respectively.

4. Declare an integer variable sum to store the resultant
sum of the 3 numbers.

5. Add the 3 numbers and store the result in the variable
sum.

6. Print the value of variable sum
/. END

Algorithm, Pseudocode and Program

* Algorithm : Systematic logical approach which is a
well-defined, step-by-step procedure that allows a
computer to solve a problem.

 Pseudocode : It is a simpler version of a programming
code in plain English which uses short phrases to write
code for a program before it is implemented in a
specific programming language.

* Program : It is exact «code written for

problem following all the rules of the programming
language.

