
Unit-IV
String Manipulation and Regular Expression

Lecture 5: Regular Expression

Regular Expression:
 A regular expression commonly known as regex is a sequence of

characters that forms a search pattern.
Regular expression is a compact way of describing a string pattern that

matches a particular amount of text.

A regular expression can be a single character or a more complicated

pattern. Regular expressions can be used to perform all types of text search

and text replace operations.

Advantages and uses of Regular expressions;

 Regular expressions help in validation of text strings which are of

programmer’s interest.

 It offers a powerful tool for analyzing, searching a pattern and modifying

the text data.

 It helps in searching specific string pattern and extracting matching

results in a flexible manner.

 It helps in important user information validations like email address,

phone numbers and IP address.

 Regexes are mostly used for browser detection, spam filtration, checking

password strength and form validations.

How to create Regular Expressions:

Example:

Say we have created a customer feedback form, so we want to validate email

address by encoding the standardized format of an email address in a regular

expression.

We know Email addresses are of the form:

g0lu_4d3ven@gmail.com

i.e. the format includes:

 some alphanumeric or punctuation characters,

 followed by @ symbol,

 followed by a string of alphanumeric and hyphen characters, followed by

more alphanumeric and hyphen characters

 and possibly more dots, up until the end of the string, which encodes as

follows:

^[a-zA-Z0-9_\-\.]+@[a-zA-Z0-9\-]+\.[a-zA-Z0-9\-\.]+$

The sub expression:

^[a-zA-Z0-9_\-\.]+ means “start the string with at least one letter,

number, underscore, hyphen or dot or some combination of those”

The @ symbol matches a literal @.

The sub expression [a-zA-Z0-9\-]+ matches the first part of the host name

including alphanumeric characters and hyphens. {you may observe that

hyphen is slashed out \- because it’s a special character inside square

brackets.

The \. combination matches a literal .

The sub expression [a-zA-Z0-9\-\.]+$ matches the rest of a domain

name including letters, numbers, hyphens and more dots if required up until

the end of the string.

Little bit more explanation:

Anchoring to the Beginning or End of a String:

In the above example you have noticed the starting and end symbol i.e. ^ and

$.

 You can specify if a particular sub-expression should appear at the start,

the end or both.

The caret symbol (^) is used at the start of a regular expression to show

that it must appear at the beginning of a searched string and

$ is used at the end of a regular expression to show that it must appear at

the end.

e.g. ^golu this matches golu at the start of a string.

com$ matches com at the end of a string.

Matching Literal Special Characters:

If you want to match one of the special characters such as . , {, or $, you must

put a slash (\) in front of it. If you want to represent a slash, you must

replace it with two slashes \\.

List of Special Characters used in POSIX Regular Expressions outside square

brackets:

List of Special Characters used in POSIX regular expressions inside square

brackets:

Counted Subexpressions:

We can specify how many times something can be repeated by using a

numerical expression in curly braces ({ }).

You can show:

 an exact number of repetitions ({3} means exactly 3 repetitions),

 a range of repetitions ({2,4} means from 2 to 4 repetitions), or

 an open ended range of repetitions ({ 2, } means at least two repetitions).

e.g. (very) {1,3}

matches ‘very’, ‘very very’ and ‘very very very’

Character Sets and Classes:

Using character sets immediately gives regular expressions more power than

exact matching expressions.

You can use the . character as a wildcard for any other single character except

a new line (\n). e.g. the regular expression

.at

matches the strings

‘cat’, ‘sat’, and ‘mat’, among others.

If you want to specify a range of characters, then [a-z] i.e. between a and z.

Anything enclosed in the special square brace characters [and] is a character

class i.e. a set of characters to which a matched character must belong.

e.g. [aeiou] means any vowel.

you can also describe range using hyphen lik [a-zA-Z] i.e. for any alphabetic

character in upper or lowercase.

You can use sets to specify that a character cannot be a member of a set e.g.

[^a-z] matches any character that is not between a and z. The caret symbol

means not when it is placed inside the square bracket.

Repetition:

Often you want to specify that there might be multiple occurrences of a

particular string or class of character.

You can represent this using two special characters in your regular expression:

* symbol means that the pattern can be repeated zero or more times and

+ symbol means that the pattern can be repeated one or more times.

The symbol should appear directly after the part of the expression that it

applied to.

