
COMP303TH

Software Engineering

Unit: II

Lecture: 2

Software Design Concepts

The software design concept means the principle behind the design.

It describes how you plan to solve the problem of designing software. The

software design concept provides a supporting and essential structure or model

for developing the right software.

There are many concepts of software design:

 Abstraction: (hide irrelevant data)

o Abstraction means to hide the details to reduce complexity and

increases efficiency or quality.

o Different levels of abstraction are necessary and musts be applied

at each stage of the design process so that any error that is present

can be removed to increase the efficiency of the software solution

and to refine the software solution.

o The solution should be described in broad ways that cover a wide

range of different things at a higher level of abstraction and a more

detailed description of a solution of software should be given at the

lower level of abstraction.

COMP303TH

Software Engineering

 Refinement:

o It is a top-down design strategy.

o Refinement is a process of elaboration. We begin with a statement

of function (or description of information) that is defined at a high

level of abstraction i.e. the statement describes function or

information conceptually but provides no information about the

internal workings of the function or the internal structure of the

information.

o Refinement causes the designer to elaborate on the original

statement, providing more and more detail as each successive

refinement (elaboration) occurs.

 Abstraction and refinement are complementary concepts.

 Abstraction enables a designer to specify procedure

and data and yet suppress low-level details.

 Refinement helps the designer to reveal low-level

details as design progresses.

o Both concepts aid the designer in creating a

complete design model as the design evolves.

 Modularity: (subdivide the system)

o Modularity means dividing the system or project into smaller parts

to reduce the complexity of the system or project.

o Modularity in design means subdividing a system into smaller

parts so that these parts can be created independently and then

use these parts in different systems to perform different functions.

o Modularity is the single attribute of software that allows a program

to be intellectually manageable.

o Monolithic Software  a large program composed of a single

module, cannot be easily grasped by a reader. The number of

control paths, span of reference, number of variables and over all

complexity would make understanding close to impossible.

o So modularity in design reduces complexity, facilitates change and

results in easier implementation by encouraging parallel

development of different parts of a system.

COMP303TH

Software Engineering

 Architecture/ Software Architecture:

o Architecture is the hierarchical structure of program components,

the manner in which these components interact and the structure

of data that are used by the components.

o One goal of software design is to derive an architectural rendering

of a system. This rendering serves as a framework from which

more detailed design activities are conducted.

 Control Hierarchy/ Program Structure:

o Program Structure represents the organization of program

components (modules) and implies a hierarchy of control.

o It does not represent procedural aspects of software such as

sequence of processes, occurrence or order of decisions or

repetition of operations nor is it necessarily applicable to all

architectural styles.

 Information Hiding:

o Information hiding is achieved by designing the modules in a

manner that the information gathered or contained in one module

is hidden and can’t be accessed by any other modules.

o The use of information hiding as a design criterion for modular

systems provides the greatest benefits when modifications are

required during testing and later, during software maintenance.

Because most data and procedure are hidden from other parts of

the software, inadvertent errors introduced during modification are

less likely to propagate to other locations within the software.

