
COMP303TH

Software Engineering

Unit: II

Lecture: 3

Modularization

Modularity has become an accepted approach in all engineering disciplines as

a modular design reduces complexity, facilitates change (a critical aspect of

software maintainability) and results in easier implementation by encouraging

parallel development of different parts of a system.

Modularization is a technique to divide a software system into multiple discrete

and independent modules which are expected to be capable of carrying out

tasks independently. Designers tend to design modules such that they can be

executed and/or compiled separately and independently.

Advantages of modularization:

 Smaller components are easier to maintain

 Program can be divided based on functional aspects

 Desired level of abstraction can be brought in the program

 Concurrent execution can be made possible.

Functional Independence:

Functional independence is achieved by developing modules with “single-

minded” function and with a tendency to very less interaction with other

modules. In other words, a software is designed in such a way that each

module addresses a specific subfunction of requirements and has a simple

interface when viewed from other parts of the program structure.

 Software with effective modularity i.e. independent modules is easier to

develop because function may be compartmentalized and interfaces are

simplified.

 Independent modules are easier to maintain (and test) because

secondary effects caused by design or code modification are limited, error

propagation is reduced and reusable modules are possible.

Functional independence is a key to good design and design is the key to

software quality.

Independence is measured using two qualititative criteria:

 cohesion

o is a measure of the relative functional strength of a module.

 coupling

o is a measure of the relative interdependence among modules.

COMP303TH

Software Engineering

Cohesion:

 Cohesion is a measure that defines the degree of intra-dependability

within elements of a module.

The greater the cohesion, the better is the program design we always

strive for high cohesion.

Coupling:

 Coupling is a measure that defines the level of inter-dependability

among modules of a program. It tells at what level the modules interfere and

interact with each other.

The lower the coupling, the better the program. we strive for lowest

possible coupling.

There are five levels of coupling:

 Content Coupling: When a module can directly access or modify or refer

to the content of another module, it is called content level coupling.

 Common Coupling: When multiple modules have read and write access

to some global data, it is called common or global coupling.

 Control Coupling: Two modules are called control-coupled if one of them

decides the function of the other module or changes its flow of execution.

 Stamp Coupling: When multiple modules share common data structure

and work on different part of it, it is called stamp coupling.

 Data Coupling: Data coupling is when two modules interact with each

other by means of passing data (as parameter). If a module passes data

structure as parameter, then the receiving module should use all its

components.

