
COMP303TH

Software Engineering

testing reduces a significant amount of testing efforts and time
duration required for testing software so that the overall development

time of software is reduced.

7. Conduct formal technical reviews to evaluate the nature, quality or

ability of the test strategy and test cases.
The formal technical review helps in detecting any unfilled gap in the

testing approach. Hence, it is necessary to evaluate the ability and
quality of the test strategy and test cases by technical reviewers to
improve the quality of software.

8. For the testing process, developing a approach for the continuous
development.

As a part of a statistical process control approach, a test strategy that
is already measured should be used for software testing to measure

and control the quality during the development of software.

COMP303TH

Software Engineering

Unit: IV

Lecture: 6

Software Testing Strategies

(Part-II)

Unit Testing

Software testing is one element of a broader topic that is often referred to as

verification and validation (V&V).

 Verification refers to the set of activities that ensure that software

correctly implements a specific function.

 Validation refers to a different set of activities that ensure that the

software that has been built is traceable to customer requirements.

Verification: “Are we building the product right?”

Validation: “Are we building the right product?”

Difference between Verification & Validation:

The software engineering process may be viewed as the spiral illustrated in

below figure:

Fig: Testing Strategy

COMP303TH

Software Engineering

A strategy for software testing may also be viewed in the context of the

spiral:

 Unit testing begins at the vortex of the spiral and concentrates on each

unit (i.e., component) of the software as implemented in source code.

 Testing progresses by moving outward along the spiral to integration

testing, where the focus is on design and the construction of the

software architecture.

 Taking another turn outward on the spiral, we encounter validation

testing, where requirements established as part of software

requirements analysis are validated against the software that has been

constructed.

 Finally, we arrive at system testing, where the software and other

system elements are tested as a whole. To test computer software, we

spiral out along stream�lines that broaden the scope of testing with each

turn.

Unit Testing:

Unit testing is defined as a type of software testing where individual

components of a software are tested.

Unit testing of software product is carried out during the development of an

application. An individual component may be either an individual function or

a procedure. Unit testing is typically performed by the developer.

The objective of unit testing is:

 To isolate a section of code.

 To verify the correctness of code

 To test every function and procedure.

 To fix bug early in development cycle and to save costs.

 To help the developers to understand the code base and enables them to

make changes quickly.

 To help for code reuse.

COMP303TH

Software Engineering

The tests that occur as part of unit tests are illustrated schematically in below

figure:

The module interface is tested to ensure that information properly flows into

and out of the program unit under test.

The local data structure is examined to ensure that data stored temporarily

maintains its integrity during all steps in an algorithm's execution.

Boundary conditions are tested to ensure that the module operates properly at

boundaries established to limit or restrict processing.

All independent paths (basis paths) through the control structure are exercised

to ensure that all statements in a module have been executed at least once.

And finally, all error handling paths are tested.

Unit testing is simplified when a component with high cohesion is designed.

When only one function is addressed by a component, the number of test cases

is reduced and errors can be more easily predicted and uncovered.

