
Unit-II
Lecture: 6

for, foreach Loops, break and continue

PHP for loop:

The for loop repeats a block of code as long as a certain condition is met. It is

typically used to execute a block of code for certain number of times.

Syntax:

for(initialization; condition; increment){

 //code to be executed

}

The parameters of for loop have following meaning:

 initialization: it is used to initialize the counter variables, evaluated

once unconditionally before the first execution of the body of the loop.

 condition: in the beginning of each iteration, condition is evaluated. If it

evaluates to true, the loop continues and the nested statements are

executed. If it evaluates to false, the execution of the loop ends.

 increment: it updates the loop counter with a new value. It is evaluated

at the end of each iteration.

Nested for loops:

We can also use a for loop inside another for loop.

e.g.

<?php

for($a = 0; $a <= 2; $a++)

{

 for($b = 0; $b <= 2; $b++)

 {

 echo "$b $a ";

 }

}

?>

Output will be:

0 0

1 0

2 0

0 1

1 1

2 1

0 2

1 2

2 2

PHP foreach Loop:

The foreach loop in PHP is used to access key-value pairs of an array. This loop

only works with arrays and you do not have to initialize any loop counter or set

any condition for exiting from the loop, everything is done implicitly by the

loop.

Syntax:

foreach ($array as $value) {

 //code to be executed

}

Example:

<?php

$colors = array("Red", "Green", "Blue");

// Loop through colors array

foreach($colors as $value)

{

echo $value . "
";

}

 ?>

There is one more syntax of foreach loop, which is extension of the first.

foreach($array as $key => $value){

//code to be executed

}

Example:

<?php

$superhero=array(

“name” => “Shaktiman”,

“email”=> shkatiman@gmail.com

“age” => 32);

// loop through superhero array

foreach($superhero as $key =>$value){

echo $key . “ : ” .$value . “
”;

}

?>

mailto:shkatiman@gmail.com

The break Statement:

The PHP break keyword is used to terminate the execution of a loop

prematurely.

The break statement is situated inside the statement block. It gives you full

control and whenever you want to exit from the loop you can come out. After

coming out of a loop immediate statement to the loop will be executed.

e.g. in the example below, we want to find the first number divisible by 13,

which is between 1762 and 1800, starting from 1762.

<?php

$x = 13;

for($i = 1762; $i < 1800; $i++)

{

 if($i % $x == 0)

 {

 echo "The number is $i";

 break;

 }

}

?>

The output will be:

The number is 1768.

The continue statement:

The PHP continue keyword is used to halt the current iteration of a loop
but it does not terminate the loop.

Just like the break statement the continue statement is situated inside the
statement block containing the code that the loop executes, preceded by a

conditional test. For the pass encountering continue statement, rest of the
loop code is skipped and next pass starts.

Example:

<?php

for ($x = 0; $x < 10; $x++) {

 if ($x == 4) {

 continue;

 }

 echo "The number is: $x
";

}

?>

The above example will skip the value of 4.

